CRIF1 Interacting with CDK2 Regulates Bone Marrow Microenvironment-Induced G0/G1 Arrest of Leukemia Cells

نویسندگان

  • Qian Ran
  • Ping Hao
  • Yanni Xiao
  • Lixing Xiang
  • Xingde Ye
  • Xiaojun Deng
  • Jiang Zhao
  • Zhongjun Li
چکیده

BACKGROUND To assess the level of CR6-interacting factor 1 (CRIF1), a cell cycle negative regulator, in patients with leukemia and investigate the role of CRIF1 in regulating leukemia cell cycle. METHODS We compared the CRIF1 level in bone marrow (BM) samples from healthy and acute myeloid leukemia (AML), iron deficiency anemia (IDA) and AML-complete remission (AML-CR) subjects. We also manipulated CRIF1 level in the Jurkat cells using lentivirus-mediated overexpression or siRNA-mediated depletion. Co-culture with the BM stromal cells (BMSCs) was used to induce leukemia cell cycle arrest and mimic the BM microenvironment. RESULTS We found significant decreases of CRIF1 mRNA and protein in the AML group. CRIF1 overexpression increased the proportion of Jurkat cells arrested in G0/G1, while depletion of endogenous CRIF1 decreased cell cycle arrest. Depletion of CRIF1 reversed BMSCs induced cell cycle arrest in leukemia cells. Co-immunoprecipitation showed a specific binding of CDK2 to CRIF1 in Jurkat cells during cell cycle arrest. Co-localization of two proteins in both nucleus and cytoplasm was also observed with immunofluorescent staining. CONCLUSION CRIF1 may play a regulatory role in the BM microenvironment-induced leukemia cell cycle arrest possibly through interacting with CDK2 and acting as a cyclin-dependent kinase inhibitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation

Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...

متن کامل

Alterations of adiponectin gene expression in bone marrow of acute myeloid leukemia

Background: Acute myeloid leukemia (AML) is characterized by the proliferation of myeloid precursors and abnormal differentiation of hematopoietic stem cells, which results in the accumulation of immature cells in the bone marrow (BM). The accumulation of these cells in the bone marrow causes molecular and cellular changes in the microenvironment of the bone marrow. The adiponectin hormone orig...

متن کامل

CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells.

Chronic myelogenous leukemia (CML) is driven by constitutively activated Bcr-Abl tyrosine kinase, which causes the defective adhesion of CML cells to bone marrow stroma. The overexpression of p210Bcr-Abl was reported to down-regulate CXCR4 expression, and this is associated with the cell migration defects in CML. We proposed that tyrosine kinase inhibitors, imatinib or INNO-406, may restore CXC...

متن کامل

Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40

The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014